Variational Bayesian dropout with a Gaussian prior for recurrent neural networks application in rainfall–runoff modeling

Author:

Sadeghi Tabas SORCID,Samadi SORCID

Abstract

Abstract Recurrent neural networks (RNNs) are a class of artificial neural networks capable of learning complicated nonlinear relationships and functions from a set of data. Catchment scale daily rainfall–runoff relationship is a nonlinear and sequential process that can potentially benefit from these intelligent algorithms. However, RNNs are perceived as being difficult to parameterize, thus translating into significant epistemic (lack of knowledge about a physical system) and aleatory (inherent randomness in a physical system) uncertainties in modeling. The current study investigates a variational Bayesian dropout (or Monte Carlo dropout (MC-dropout)) as a diagnostic approach to the RNNs evaluation that is able to learn a mapping function and account for data and model uncertainty. MC-dropout uncertainty technique is coupled with three different RNN networks, i.e. vanilla RNN, long short-term memory (LSTM), and gated recurrent unit (GRU) to approximate Bayesian inference in a deep Gaussian noise process and quantify both epistemic and aleatory uncertainties in daily rainfall–runoff simulation across a mixed urban and rural coastal catchment in North Carolina, USA. The variational Bayesian outcomes were then compared with the observed data as well as with a well-known Sacramento soil moisture accounting (SAC-SMA) model simulation results. Analysis suggested a considerable improvement in predictive log-likelihood using the MC-dropout technique with an inherent input data Gaussian noise term applied to the RNN layers to implicitly mitigate overfitting and simulate daily streamflow records. Our experiments on the three different RNN models across a broad range of simulation strategies demonstrated the superiority of LSTM and GRU approaches relative to the SAC-SMA conceptual hydrologic model.

Funder

United States National Science Foundation

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Reference39 articles.

1. The CAMELS data set: catchment attributes and meteorology for large-sample studies;Addor;Hydrol. Earth Syst. Sci.,2017

2. Evaluating the SWAT model for a low-gradient forested watershed in Coastal South Carolina;Amatya;Trans. Am. Soc. Agric. Biol. Eng.,2011

3. Weight uncertainty in neural network;Blundell,2015

4. Nonlinear prediction of chaotic time series;Casdagil;Physica D,1989

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3