Mitigation synergy and policy implications in urban transport sector: a case study of Xiamen, China

Author:

Bian Yahui,Lin Jianyi,Han Hui,Lin Shuifa,Li Huaqing,Chen Xiang

Abstract

Abstract The urban transport sector is one of most significant contributors to greenhouse gas (GHG) and air pollutant (AP) emissions. To achieve co-benefits of GHG and AP emission reductions, a synergistic mitigation approach targeting both climate change and air pollution has gained more attention. In this study, we evaluate mitigation synergy and policy implications for GHGs and nine APs, namely, sulfur dioxide (SO2), nitrogen oxides (NO x ), carbon monoxide (CO), particulate matters (PM10 and PM2.5), black carbon (BC), organic carbon (OC), volatile organic compounds (VOCs) and ammonia (NH3), in the transport sector of Xiamen, China, during the 2013–2060 period using the Low Emissions Analysis Platform model and quantitative analysis methods. Results show that light-duty vehicles, river boats, buses and heavy-duty trucks are significant common sources of GHG and AP emissions. Road sector abatement during 2013–2020 was most prominent, especially for CO, NO X , VOCs and GHGs. In this sector, guide green travel (GGT) and adjust energy structure (AES) are dominant measures for mitigation synergy between GHGs and APs. From 2021 to 2060, emission pathways for GHGs, SO2, CO, VOCs and NH3 under optimize transport structure (OTS), AES and GGT scenarios will decrease markedly. Their emissions will peak soon relative to those under business as usual scenario. Additionally, the potential of mitigation synergy may mainly be attributed to the road and shipping sectors under AES scenario, which is the most effective in reducing PM10, PM2.5, BC and OC emissions; the mitigation potential under the AES scenario for GHGs and other APs is nearly 1–4 times as high as that under OTS and GGT scenarios. Therefore, mitigation synergy, especially in adjusting the energy structure for the transport sector, is essential for achieving the simultaneous goals of the ‘blue sky’ and ‘carbon peaking and neutrality’.

Funder

Institute of Urban Environment, Chinese Academy of Sciences ‘Select the candidates to undertake key research projects’

National Key R&D Program of China

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3