Improving remote sensing of extreme events with machine learning: land surface temperature retrievals from IASI observations

Author:

Boucher Eulalie,Aires Filipe

Abstract

Abstract Retrieving weather extremes from observations is critical for weather forecasting and climate impact studies. Statistical and machine learning methods are increasingly popular in the remote sensing community. However, these models act as regression tools when dealing with regression problems and as such, they are not always well-suited for the estimation of the extreme weather states. This study firstly introduces two error types that arise from such statistical methods: (a) ‘dampening’ refers to the reduction of the range of variability in the retrieved values, a natural behavior for regression models; (b) ‘inflating’ is the opposite effect (i.e. larger ranges) due to data pooling. We then introduce the concept of localization that intends to better take into account local conditions in the statistical model. Localization largely improves the retrievals of extreme states, and can be used both for retrieval at the pixel level or in image processing techniques. This approach is tested on the retrieval of land surface temperature using infrared atmospheric sounding interferometer observations: the dampening is reduced from 1.9 K to 1.6 K, and the inflating from 1.1 K to 0.5 K, respectively.

Funder

Centre National d’Etudes Spatiales

Thales

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3