Greenhouse gas emissions embodied in the U.S. solar photovoltaic supply chain

Author:

Gan YuORCID,Elgowainy Amgad,Lu Zifeng,Kelly Jarod C,Wang Michael,Boardman Richard D,Marcinkoski Jason

Abstract

Abstract Solar photovoltaic (PV) electricity is considered to be an important source of electricity generation in the quest for net-zero carbon emissions. However, the growth of solar electricity is creating both increased material demands and increased greenhouse gas (GHG) emissions from silicon and PV manufacturing (also referred to as embodied GHG emissions of solar electricity). Here we analyze the silicon and solar PV supply chain for the United States (U.S.) market and find that the embodied GHG emissions of solar PV panel materials (such as silicon), manufacture, logistics, and installation in the U.S. given the current supply chain are 36 g CO2e kWh−1 of solar electricity generated. Eighty-five percent of the embodied GHG emissions are from PV panel production processes in China and other Asia–Pacific countries. Moving the silicon and PV manufacturing to the U.S. would reduce the embodied GHG emissions of solar electricity by 16% from its current level, primarily because of the lower GHG emission intensity of the U.S. electrical grid and the lower GHG emissions for aluminum electrolysis in North America. Future scenario analysis shows that by 2030, with the U.S. PV domestic supply chain and its decarbonized grid electricity and aluminum production, as well as improving PV conversion efficiency, the embodied GHG emissions of solar electricity in the U.S. will be reduced to 21 g CO2e kWh−1.

Funder

Office of Energy Efficiency and Renewable Energy of the U.S. Department of Energy

Office of Nuclear Energy

Hydrogen and Fuel Cell Technology Office

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Reference45 articles.

1. Comparing the carbon footprint of monocrystalline silicon solar modules manufactured in China and the United States;Anctil,2021

2. Comparative life cycle assessment of fixed and single axis tracking systems for photovoltaics;Antonanzas;J. Clean. Prod.,2019

3. Solar photovoltaics—supply chain deep dive assessment;Basore,2022

4. Roadmaps to net-zero emissions systems: emerging insights and modeling challenges;Bistline;Joule,2021

5. China power 2018,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3