Spatial-temporal patterns of ambient fine particulate matter (PM2.5) and black carbon (BC) pollution in Accra

Author:

Alli Abosede S,Clark Sierra NORCID,Hughes AllisonORCID,Nimo James,Bedford-Moses Josephine,Baah Solomon,Wang Jiayuan,Vallarino Jose,Agyemang Ernest,Barratt Benjamin,Beddows Andrew,Kelly Frank,Owusu George,Baumgartner Jill,Brauer Michael,Ezzati Majid,Agyei-Mensah Samuel,Arku Raphael EORCID

Abstract

Abstract Sub-Saharan Africa (SSA) is rapidly urbanizing, and ambient air pollution has emerged as a major environmental health concern in growing cities. Yet, effective air quality management is hindered by limited data. We deployed robust, low-cost and low-power devices in a large-scale measurement campaign and characterized within-city variations in fine particulate matter (PM2.5) and black carbon (BC) pollution in Accra, Ghana. Between April 2019 and June 2020, we measured weekly gravimetric (filter-based) and minute-by-minute PM2.5 concentrations at 146 unique locations, comprising of 10 fixed (∼1 year) and 136 rotating (7 day) sites covering a range of land-use and source influences. Filters were weighed for mass, and light absorbance (10−5m−1) of the filters was used as proxy for BC concentration. Year-long data at four fixed sites that were monitored in a previous study (2006–2007) were compared to assess changes in PM2.5 concentrations. The mean annual PM2.5 across the fixed sites ranged from 26 μg m−3 at a peri-urban site to 43 μg m−3 at a commercial, business, and industrial (CBI) site. CBI areas had the highest PM2.5 levels (mean: 37 μg m−3), followed by high-density residential neighborhoods (mean: 36 μg m−3), while peri-urban areas recorded the lowest (mean: 26 μg m−3). Both PM2.5 and BC levels were highest during the dry dusty Harmattan period (mean PM2.5: 89 μg m−3) compared to non-Harmattan season (mean PM2.5: 23 μg m−3). PM2.5 at all sites peaked at dawn and dusk, coinciding with morning and evening heavy traffic. We found about a 50% reduction (71 vs 37 μg m−3) in mean annual PM2.5 concentrations when compared to measurements in 2006–2007 in Accra. Ambient PM2.5 concentrations in Accra may have plateaued at levels lower than those seen in large Asian megacities. However, levels are still 2- to 4-fold higher than the WHO guideline. Effective and equitable policies are needed to reduce pollution levels and protect public health.

Funder

UK Research and Innovation

Wellcome Trust

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Reference62 articles.

1. Half the world’s population are exposed to increasing air pollution;Shaddick;npj Clim. Atmos. Sci.,2020

2. Population division (UN-DESA). world urbanization prospects,2018

3. Urbanization in Africa: challenges and opportunities for conservation;Güneralp;Environ. Res. Lett.,2018

4. Urbanization and economic growth: the arguments and evidence for Africa and Asia;Turok;Environ. Urban,2013

5. Sources and levels of particulate matter in North African and sub-Saharan cities: a literature review;Naidja;Environ. Sci. Pollut. Res.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3