Unprecedented sea-ice minima enhances algal production deposited at the Arctic seafloor

Author:

Stevenson Mark A,Airs Ruth L,Abbott Geoffrey D

Abstract

Abstract Sea-ice in the Arctic is declining, with 2018 a particularly low year for ice extent, driven by anomalously warm atmospheric circulation in winter 2017/18. This is consistent with a multi-decadal trend to an earlier ice-free Barents Sea as climate change rapidly warms the Arctic. Here we investigate a N–S transect in the Barents Sea, crossing the Polar Front from Atlantic waters in the south to Arctic waters in the north, focusing on the organic geochemical signature (pigments and lipids) in surface sediments sampled in summer, between the years of 2017–19. Early ice-out in summer 2018 was confirmed by satellite imagery, tracking the evolution of Arctic sea-ice extent between years. Consistent with less extensive sea-ice cover in 2018 we found increases in multiple chlorophyll and carotenoid pigments as well as fatty acids (reflecting recent phytoplankton delivery) in the northern part of our transect at the seafloor. We attribute this to nutrient and organic matter release from earlier 2018 ice-out leading to stratification, post-melt phytoplankton blooms and the deposition of organic matter to the seafloor, evidenced by pigments and lipids. Organic matter delivered to the seafloor in 2018 was reactive and highly labile, confirming its deposition in the most recent season, pointing to rapid deposition. Correlations were found during ice-free periods between satellite-derived chlorophyll a and multiple indicators of water column productivity deposited at the seafloor. We also found convincing evidence of multi-year biogeochemical change across the Polar Front, where sedimentary change is marked by chlorophyll degradation products providing evidence of grazing, indicative of a tightly coupled ecosystem close to the marginal ice zone. Overall, our results show the tight coupling of Arctic productivity with the delivery and quality of organic matter to the seafloor and how this varies across the Barents Sea. More frequent early summer sea-ice loss driven by climate warming in the Barents Sea will have consequences for the delivery of organic matter to the seafloor with impacts for benthic organisms, microbiology and the sequestration of carbon.

Funder

UKRI Natural Environment Research Council

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3