A review of indirect N2O emission factors from artificial agricultural waters

Author:

Webb Jackie RORCID,Clough Tim J,Quayle Wendy C

Abstract

Abstract Nitrous oxide (N2O) produced from dissolved nitrogen (N) compounds in agricultural runoff water must be accounted for when reporting N2O budgets from agricultural industries. Constructed (‘artificial’) water bodies within the farm landscape are the first aquatic systems that receive field N losses, yet emission accounting for these systems remains under-represented in Intergovernmental Panel on Climate Change (IPCC) emission factor (EF) guidelines and global N2O budgets. Here, we examine the role of artificial waters as indirect sources of agricultural N2O emissions, identify research gaps, and explore the challenge of predicting these emissions using default EFs. Data from 52 studies reporting dissolved N2O, nitrate (NO3), and EFs were synthesised from the literature and classified into four water groups; subsurface drains, surface drains, irrigation canals, and farm dams. N2O concentration varied significantly between artificial waters while NO3 did not, suggesting functional differences in the way artificial waters respond to anthropogenic N loading. EFs for the N2O–N:NO3–N concentration ratio were highly skewed and varied up to three orders of magnitude, ranged 0.005%–2.6%, 0.02%–4.4%, 0.03%–1.33%, and 0.04%–0.46% in subsurface drains, surface drains, irrigation canals, and farm dams, respectively. N2O displayed a non-linear relationship with NO3, where EF decreased exponentially with increasing NO3, demonstrating the inappropriateness of the stationary EF model. We show that the current IPCC EF model tends to overestimate N2O production in response to NO3 loading across most artificial waters, particularly for farm dams. Given their widespread existence, there is a need to: (a) constrain their global abundance and distribution; (b) include artificial waters in the global N2O budget, and (c) expand the study of N processing in artificial waters across a geographically diverse area to develop our biogeochemical understanding to the level that has been achieved for rivers and lakes.

Funder

Deakin University

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3