Spring coherence in dissolved organic carbon export dominates total coherence in Boreal Shield forested catchments

Author:

Morison M Q,Higgins S N,Webster K L,Emilson E J S,Yao H,Casson N J

Abstract

Abstract The wide range of forested landscapes in boreal environments store and cycle substantial amounts of carbon, although the capacity of these systems to act as either a carbon sink or source is uncertain under a changing climate. While there are clear reports of regional-scale increases in dissolved organic carbon (DOC) concentrations in streams and lakes, there remains substantial watershed-scale variability in these patterns. Coherence is a framework for examining if variables of interest within adjacent spatial units change synchronously or asynchronously through time and has been widely applied in the context of lentic hydrochemistry, and which can shed light on the relative importance of regional- vs. local-scale controls. The objective of this research was to quantify coherence in discharge, DOC concentrations, and DOC loads in forested boreal watersheds, and to what extent coherence varied by season. Coherence was assessed using data from three long-term ecological research sites spanning boreal forest environments (IISD-Experimental Lakes Area, Turkey Lakes Watershed Study, and Dorset Environmental Science Centre) that included 29 829 DOC measurements across 739 stream-years, examining correlation between stream-pairs within each site, but not between sites. Seasonal coherence in DOC export was consistent across the three sites; coherence was significantly greater in spring than all other seasons, and was strongly related to discharge coherence. Currently, the season with the greatest loads (spring) is also the most coherent season, suggesting that annual between-stream coherence may be reduced if spring becomes proportionally less important in hydrologic budgets under a changing climate. This research aids in determining which factors contribute to synchronous watershed behaviour, and which factors may contribute to the timing and extent of individual watershed-scale deviations from landscape-level patterns.

Funder

Mitacs

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3