A retrospective study of the 2012–2016 California drought and its impacts on the power sector

Author:

Kern Jordan D,Su YufeiORCID,Hill Joy

Abstract

Abstract Over the period 2012–2016, the state of California in the United States (U.S.) experienced a drought considered to be one of the worst in state history. Drought’s direct impacts on California’s electric power sector are understood. Extremely low streamflow manifests as reduced hydropower availability, and if drought is also marked by elevated temperatures, these can increase building electricity demands for cooling. Collectively, these impacts force system operators to increase reliance on natural gas power plants, increasing market prices and emissions. However, previous investigations have relied mostly on ex post analysis of observational data to develop estimates of increases in costs and carbon dioxide (CO2) emissions due to the 2012–2016 drought. This has made it difficult to control for confounding variables (e.g. growing renewable energy capacity, volatile natural gas prices) in assessing the drought’s impacts. In this study, we use a power system simulation model to isolate the direct impacts of several hydrometeorological phenomena observed during the 2012–2016 drought on system wide CO2 emissions and wholesale electricity prices in the California market. We find that the impacts of drought conditions on wholesale electricity prices were modest (annual prices increased by $0–3 MWh−1, although much larger within-year increases are also observed). Instead, it was an increase in natural gas prices, punctuated by the 2014 polar vortex event that affected much of the Eastern U.S., which caused wholesale electricity prices to increase during the drought. Costs from the drought were very different for the state’s three investor owned utilities. Overall, we find that increased cooling demands (electricity demand) during the drought may have represented a larger economic cost ($3.8 billion) than lost hydropower generation ($1.9 billion). We also find the potential for renewable energy to mitigate drought-cased increases in CO2 emissions to be negligible, standing in contrast to some previous studies.

Funder

National Science Foundation

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Reference31 articles.

1. Global warming and changes in risk of concurrent climate extremes: insights from the 2014 California drought;Aghakouchak;Geophys. Res. Lett.,2014

2. Multi-century evaluation of Sierra Nevada snowpack;Belmecheri;Nat. Clim. Change,2016

3. Historical streamflow data,2019

4. The nature of supply side effects on electricity prices: the impact of water temperature;Boogert;Econ. Lett.,2005

5. California Greenhouse Gas Emission Inventory: 2000–2017,2019

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3