An inter-comparison of the social costs of air quality from reduced-complexity models

Author:

Gilmore Elisabeth AORCID,Heo JinhyokORCID,Muller Nicholas ZORCID,Tessum Christopher WORCID,Hill Jason DORCID,Marshall Julian DORCID,Adams Peter JORCID

Abstract

Abstract Reliable estimates of externality costs—such as the costs arising from premature mortality due to exposure to fine particulate matter (PM2.5)—are critical for policy analysis. To facilitate broader analysis, several datasets of the social costs of air quality have been produced by a set of reduced-complexity models (RCMs). It is much easier to use the tabulated marginal costs derived from RCMs than it is to run ‘state-of-the-science’ chemical transport models (CTMs). However, the differences between these datasets have not been systematically examined, leaving analysts with no guidance on how and when these differences matter. Here, we compare per-tonne marginal costs from ground level and elevated emission sources for each county in the United States for sulfur dioxide (SO2), nitrogen oxides (NOx), ammonia (NH3) and inert primary PM2.5 from three RCMs: Air Pollution Emission Experiments and Policy (AP2), Estimating Air pollution Social Impacts Using Regression (EASIUR) and the Intervention Model for Air Pollution (InMAP). National emission-weighted average damages vary among models by approximately 21%, 31%, 28% and 12% for inert primary PM2.5, SO2, NOx and NH3 emissions, respectively, for ground-level sources. For elevated sources, emission-weighted damages vary by approximately 42%, 26%, 42% and 20% for inert primary PM2.5, SO2, NOx and NH3 emissions, respectively. Despite fundamental structural differences, the three models predict marginal costs that are within the same order of magnitude. That different and independent methods have converged on similar results bolsters confidence in the RCMs. Policy analyzes of national-level air quality policies that sum over pollutants and geographical locations are often robust to these differences, although the differences may matter for more source- or location-specific analyzes. Overall, the loss of fidelity caused by using RCMs and their social cost datasets in place of CTMs is modest.

Funder

US Environmental Protection Agency

US Department of Agriculture

US Department of Energy

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3