Rotational complexity across US counties is currently insufficient to observe yield gains in major crops

Author:

Burchfield Emily KORCID,Crossley Michael SORCID,Nelson Katherine SORCID

Abstract

Abstract Landscape complexity promotes ecosystem services and agricultural productivity, and often encompasses aspects of compositional or configurational land cover diversity across space. However, a key agricultural diversification practice, crop rotation, extends crop land cover complexity concurrently across space and time. Long-term experiments suggest that complex crop rotations can facilitate yield increases in major crops. Using a compiled county-annual panel dataset, we examined whether yield benefits of crop rotational complexity were apparent on a landscape scale in the conterminous US for four major crops between 2008 and 2020. We found that the benefit of rotational complexity was only apparent for cotton and winter wheat, and that the benefit for wheat was driven by one region. Corn exhibited the opposite pattern, wherein higher yields were consistently obtained with lower rotational complexity, while soybean yield appeared relatively insensitive to rotational complexity. Effects of rotational complexity were sometimes influenced by agrochemical usage. Positive effects of rotational complexity were only apparent with high fertilizer for soybean and wheat, and with low fertilizer for cotton. Corn yield in high-complexity, low-yielding counties appeared to improve with high fertilizer inputs. For the overwhelming majority of acres growing these major crops, crop rotation patterns were quite simple, which when combined with the short time span of available data, may explain the apparent discrepancy between long-term experiments and nationwide data. Current demand and incentives that promote highly intensified and specialized agriculture likely hinder realization of the benefits of rotational complexity for production of key crops in the US. Increasing rotational complexity where major crops are grown thus remains an underutilized approach to mitigate landscape simplification and to promote ecosystem services and crop yields.

Funder

National Institute of Food and Agriculture

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3