Attributing the driving mechanisms of the 2015–2017 drought in the Western Cape (South Africa) using self-organising maps

Author:

Odoulami Romaric CORCID,Wolski PiotrORCID,New MarkORCID

Abstract

Abstract The Southwestern Cape (SWC) region in South Africa experienced a severe rainfall deficit between 2015–2017. The resulting drought caused the City of Cape Town to almost run out of water during the summer of 2017–2018. Using the self-organising maps approach, we identify and classify the synoptic circulation states over Southern Africa known to influence the local climate in the SWC into three groups (dry, intermediate, and wet circulation types) using large ensembles of climate model simulations with anthropogenic forcing and natural forcing. We then assessed the influence of anthropogenic climate change on the likelihood of these circulation types and associated rainfall amounts over the SWC during the drought. Our findings suggest that during the drought, the frequency of dry (wet) circulation types increases (decreases) across all models under anthropogenic forcing relative to the natural forcing. While there was no clear direction in the associated rainfall change in the dry circulation types, rainfall decreased across most models in wet nodes. All models agree that anthropogenic climate change has increased the likelihood of dry circulation types (median probability ratio (PR): 0.93–0.96) and decreased that of wet circulation types (median PR: 1.01 and 1.12), indicating a shift towards lesser (more) wet (dry) synoptic circulation states and associated rainfall during the drought. The long-term climatology also depicts similar patterns indicating the drought may result from long-term changes in the frequency of wet circulations and their associated rainfall. This study further explains the anthropogenic influence on the dynamic (synoptic circulation states) and thermodynamic (rainfall) factors that influenced the SWC 2015–2017 drought.

Funder

AXA Research Fund

Carnegie Corporation of New York

Deutscher Akademischer Austauschdienst

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3