Sustained methane emissions from China after 2012 despite declining coal production and rice-cultivated area

Author:

Sheng JianxiongORCID,Tunnicliffe Rachel,Ganesan Anita L,Maasakkers Joannes D,Shen LuORCID,Prinn Ronald G,Song Shaojie,Zhang Yuzhong,Scarpelli TiaORCID,Anthony Bloom A,Rigby Matthew,Manning Alistair J,Parker Robert JORCID,Boesch Hartmut,Lan XinORCID,Zhang BoORCID,Zhuang Minghao,Lu XiORCID

Abstract

Abstract China’s anthropogenic methane emissions are the largest of any country in the world. A recent study using atmospheric observations suggested that recent policies aimed at reducing emissions of methane due to coal production in China after 2010 had been largely ineffective. Here, based on a longer observational record and an updated modelling approach, we find a statistically significant positive linear trend (0.36 ± 0.04 ( ± 1 σ ) Tg CH4 yr−2) in China’s methane emissions for 2010–2017. This trend was slowing down at a statistically significant rate of -0.1 ± 0.04 Tg CH4 yr−3. We find that this decrease in growth rate can in part be attributed to a decline in China’s coal production. However, coal mine methane emissions have not declined as rapidly as production, implying that there may be substantial fugitive emissions from abandoned coal mines that have previously been overlooked. We also find that emissions over rice-growing and aquaculture-farming regions show a positive trend (0.13 ± 0.05 Tg CH4 yr−2 for 2010–2017) despite reports of shrinking rice paddy areas, implying potentially significant emissions from new aquaculture activities, which are thought to be primarily located on converted rice paddies.

Funder

NASA

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3