Isolating the effect of biomass burning aerosol emissions on 20th century hydroclimate in South America and Southeast Asia

Author:

Magahey ShayORCID,Kooperman Gabriel JORCID

Abstract

Abstract Biomass burning is a significant source of aerosol emissions in some regions and has a considerable impact on regional climate. Earth system model simulations indicate that increased biomass burning aerosol emissions contributed to statistically significant decreases in tropical precipitation over the 20th century. In this study, we use the Community Earth System Model version 1 Large Ensemble (CESM1-LENS) experiment to evaluate the mechanisms by which biomass burning aerosol contributed to decreased tropical precipitation, with a focus on South America and Southeast Asia. We analyze the all-but-one forcing simulations in which biomass burning aerosol emissions are held constant while other forcings (e.g., greenhouse gas concentrations) vary throughout the 20th century. This allows us to isolate the influence of biomass burning aerosol on processes that contribute to decreasing precipitation, including cloud microphysics, the radiative effects of absorbing aerosol particles, and alterations in regional circulation. We also show that the 20th century reduction in precipitation identified in the CESM1-LENS historical and biomass burning experiments is consistent across Coupled Model Intercomparison Project Phase 5 models with interactive aerosol schemes and the CESM2 single-forcing experiment. Our results demonstrate that higher concentrations of biomass burning aerosol increases the quantity of cloud condensation nuclei and cloud droplets, limiting cloud droplet size and precipitation formation. Additionally, absorbing aerosols (e.g., black carbon) contribute to a warmer cloud layer, which promotes cloud evaporation, increases atmospheric stability, and alters regional circulation patterns. Corresponding convectively coupled circulation responses, particularly over the tropical Andes, contribute to further reducing the flow of moisture and moisture convergence over tropical land. These results elucidate the processes that affect the water cycle in regions prone to biomass burning and inform our understanding of how future changes in aerosol emissions may impact tropical precipitation over the 21st century.

Funder

U.S. Department of Energy Office of Science

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3