Smoke from 2020 United States wildfires responsible for substantial solar energy forecast errors

Author:

Juliano Timothy WORCID,Jiménez Pedro A,Kosović BrankoORCID,Eidhammer TrudeORCID,Thompson Gregory,Berg Larry KORCID,Fast JeromeORCID,Motley Amber,Polidori Andrea

Abstract

Abstract The 2020 wildfire season (May through December) in the United States was exceptionally active, with the National Interagency Fire Center reporting over 10 million acres ( > 40 000 km2) burned. During the September 2020 wildfire events, large concentrations of smoke particulates were emitted into the atmosphere. As a result, smoke was responsible for ∼10%–30% reduction in solar power production during peak hours as recorded by the California Independent System Operator (CAISO) sites. In this study, we focus on a 9 d period in September when wildfire smoke had a profound impact on solar energy production. During the smoke episodes, hour-ahead forecasts utilized by CAISO did not include the effects of smoke and therefore overestimated the expected power production by ∼10%–50%. Here we use multiple observational networks and a numerical weather prediction (NWP) model to show that the wildfire events of 2020 had a significantly detrimental influence on solar energy production due to high aerosol loading. We find that including the contribution of biomass burning particles greatly improves the day-ahead solar energy bias forecast of both global horizontal irradiance and direct normal irradiance by nearly ∼50%. Our results suggest that a more comprehensive treatment of aerosols, including biomass burning aerosols, in NWP models may be an important consideration for energy grid balancing, in addition to solar resource assessment, as solar power reliance increases.

Funder

U.S. Department of Energy

U.S. Department of Energy Solar Energy Technologies Office

United States National Science Foundation

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3