Resilience of Amazon rainfall to CO2 removal forcing

Author:

Zhang Suqin,Qu Xia,Huang GangORCID,Hu Peng,Yang Xianke,Wang YaORCID,Wu LiangORCID

Abstract

Abstract Over the Amazon region, rainfall-induced changes to CO2 pathways significantly impact humans and multiple ecosystems. Its resilience is of vital importance, and idealized CO2 removal experiments indicate that declining trends in rainfall amounts are irreversible and exhibit a deficiency when the CO2 concentration returns to the pre-industrial level. The irreversible decline in Amazon rainfall is mainly due to the weakened ascent, further led by two main causes. (1) Enhanced tropospheric warming and a wetter atmospheric boundary layer over the tropics during CO2 removal generate a strong meridional gradient of temperature and specific humidity; driven by prevailing northeasterly winds, negative moist enthalpy advection occurs, which in turn weakens the ascent over the Amazon and results in anomalous drought. (2) The enhanced radiative cooling of atmospheric column. Driven by the negative lapse-rate feedback, the outgoing longwave radiative flux increases in the clear-sky atmosphere. As a result, the anomalous diabatic descent generates to maintain the energy balance of the atmospheric column. This result implies that the symmetric removal of CO2 does not guarantee full recovery of regional precipitation.

Funder

National Natural Science Foundation of China

the Second Tibetan Plateau Scientific Expedition and Research program

Key Laboratory of Meteorological Disaster, Ministry of Education

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3