Interannual synchronization of the North American summer monsoon and the North Atlantic tropical cyclone genesis frequency

Author:

Luo JianzhouORCID,Weng JinwenORCID,Luo WeijianORCID,Wang LeiORCID

Abstract

Abstract Variations of the North American summer monsoon (NASM) and North Atlantic tropical cyclone (NATC) activities strongly influence climate anomalies in North America, with serious potential risk to life and property. Despite the scientific importance of this topic, the possible linkage between the NASM and the NATC genesis frequency remains unexplored. Here, we aim to examine the relationship between interannual variations of the NASM intensity and the NATC genesis frequency based on observations and Coupled Model Intercomparison Project Phase 6 (CMIP6) models. Our results show a strong association between the NASM intensity and the NATC genesis frequency during the extended boreal summer, with a good synchronization between their interannual variations. In years with stronger (weaker) NASM intensity, the NATC genesis frequency tends to be higher (lower). The observed NASM–NATC synchronization may be explained by two pathways: tropical-ocean-driven pathway and monsoon-heating-driven pathway. In the tropical-ocean-driven pathway, the tropical Pacific and Atlantic interbasin sea surface temperature (SST) anomalies play a critical role in bridging the NASM and NATC, by modulating the cross-Central American wind. Simulations of the tropical Pacific–Atlantic interbasin SST anomalies are critical for CMIP6 models to capture the observed linkage between the NASM and the vertical wind shear over the NATC main development region (MDR). In the monsoon-heating-driven pathway, the heating source due to the rainfall anomalies associated with the NASM can trigger atmospheric circulation anomalies through the Gill-type response, thereby affecting the NATC by changing the vertical wind shear over the MDR. This study demonstrates a connection between interannual variations of the NASM and the NATC genesis frequency, results of which can be used to advance our understanding of the monsoon–TC relationship and increase research focus on the interannual NASM–NATC synchronization in climate prediction.

Funder

the Innovative Team Plan for Department of Education of Guangdong Province

the program for scientific research start-up funds of Guangdong Ocean University

National Natural Science Foundation of China

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3