Silicon dioxide nanoparticles have contrasting effects on the temporal dynamics of sulfonamide and β-lactam resistance genes in soils amended with antibiotics

Author:

Zhang Xiujuan,Li Junjian,Li Dale,Zhang Hong,Hu Hangwei

Abstract

Abstract Nanoparticles (NPs) and antibiotic resistant genes (ARGs), as emerging environmental contaminants, have been reported to be accumulated in the soil environment. The use of NPs have raised increasing concerns about their environmental impacts, but the combined effect of NPs and antibiotics on ARGs remains less understood. Here, we established laboratory microcosms to explore the impacts of different concentrations of SiO2 NPs on β-lactam and sulfonamide resistance genes in soils amended with β-lactam or sulfonamide. Illumina sequencing and quantitative PCR revealed that the addition of NPs increased the bacterial community diversity but had no significant effects on the bacterial abundance. Moreover, NPs and sulfonamide jointly increased the abundances of sulfonamide resistance genes, while the exposure of NPs and β-lactam decreased β-lactam resistance genes. The detected ARGs were associated closely with two mobile genetic elements (MGEs, the tnpA and intI1 genes), indicating that MGEs may contribute to the dissemination of ARGs. Correlation analysis indicated the shifts in potential bacterial hosts and the frequency of horizontal gene transfer were important factors explaining the patterns of ARGs. Furthermore, structural equation models indicated that NPs exposure decreased the abundances of β-lactam resistance genes by driving changes in bacterial community and MGEs, whereas the increased abundances of sulfonamide resistance genes were mainly associated with the bacterial community, diversity and MGEs mediated by NPs and antibiotics. These results suggested that the combined effects of NPs and antibiotics on soil bacterial resistance were different due to the types of antibiotics.

Funder

National Natural Science Foundation of China

Higher Education Institution Project of Shanxi Province: Ecological Remediation of Soil Pollution Disciplines Group

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3