Abstract
Abstract
As an important carbon sink to mitigate global climate change, the role of arid and semiarid grassland ecosystem has been widely reported. Precipitation and temperature changes have a dramatic impact on the carbon balance. However, the study of wind speed has long been neglected. Intuitively, wind speed regulates the carbon balance of grassland ecosystems by affecting the opening of vegetation stomata as well as near-surface moisture and temperature. It is sufficient that there is a need to conduct field observations to explore the effect of wind speed on the carbon balance in arid and semiarid grassland. Therefore, we conducted observations of carbon fluxes and corresponding climate factors using an eddy covariance system in a typical steppe in Inner Mongolia from 2017 to 2021. The research contents include that, (i) we depicted the changing patterns of carbon fluxes and climate factors at multiple time scales; (ii) we simulated the net ecosystem carbon balance (NECB) based rectangular hyperbolic model and compared it with the observed net ecosystem exchange values; (iii) we quantified the mediated effect of wind speed on NECB by adopting structural equation modeling; (iv) we used the constrained line method to explore what wind speed intervals might have the greatest carbon sequestration capacity of vegetation. The results were as follows, (i) the values of NECB for the five years of the study period were 101.95, −48.21, −52.57, −67.78, and −30.00 g C m−2 yr−1, respectively; (ii) if we exclude the inorganic carbon component of the ecosystem, we would underestimate the annual carbon balance by 41.25, 2.36, 20.59, 22.06 and 43.94 g C m−2 yr−1; (iii) the daytime wind speed during the growing season mainly influenced the NECB of the ecosystem by regulating soil temperature and vapor pressure deficit, with a contribution rate as high as 0.41; (iv) the grassland ecosystem had the most robust carbon sequestration capacity of 4.75 μmol m−2 s−1 when the wind speed was 2–3 m s−1. This study demonstrated the significant implications of wind speed variations on grassland ecosystems.
Funder
the National Key Research & Development Program of China
Guangxi University High-level Talent Program
Subject
Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献