Tackling policy leakage and targeting hotspots could be key to addressing the ‘Wicked’ challenge of nutrient pollution from corn production in the U.S.

Author:

Liu JingORCID,Bowling LauraORCID,Kucharik ChristopherORCID,Jame SadiaORCID,Baldos UrisORCID,Jarvis Larissa,Ramankutty NavinORCID,Hertel ThomasORCID

Abstract

Abstract Reducing nutrient loss from agriculture to improve water quality requires a combination of management practices. However, it has been unclear what pattern of mitigation is likely to emerge from different policies, individually and combined, and the consequences for local and national land use and farm returns. We address this research gap by constructing an integrated multi-scale framework for evaluating alternative nitrogen loss management policies for corn production in the US. This approach combines site- and practice-specific agro-ecosystem processes with a grid-resolving economic model to identify locations that can be prioritized to increase the economic efficiency of the policies. We find that regional measures, albeit effective in reducing local nitrogen loss, can displace corn production to the area where nitrogen fertilizer productivity is low and nutrient loss rate is high, thereby offsetting the overall effectiveness of the nutrient management strategy. This spatial spillover effect can be suppressed by implementing the partial measures in tandem with nationwide policies. Wetland restoration combined with split fertilizer application, along with a nitrogen loss tax could reduce nitrate nitrogen loss to the Mississippi River by 30% while only increasing corn prices by less than 2%.

Funder

National Institute of Food and Agriculture

National Science Foundation

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Focus on global–local–global analysis of sustainability;Environmental Research Letters;2023-09-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3