A review on digital mapping of soil carbon in cropland: progress, challenge, and prospect

Author:

Huang Haili,Yang LinORCID,Zhang LeiORCID,Pu Yue,Yang Chenconghai,Wu Qi,Cai Yanyan,Shen Feixue,Zhou Chenghu

Abstract

Abstract Cropland soil carbon not only serves food security but also contributes to the stability of the terrestrial ecosystem carbon pool due to the strong interconnection with atmospheric carbon dioxide. Therefore, the better monitoring of soil carbon in cropland is helpful for carbon sequestration and sustainable soil management. However, severe anthropogenic disturbance in cropland mainly in gentle terrain creates uncertainty in obtaining accurate soil information with limited sample data. Within the past 20 years, digital soil mapping has been recognized as a promising technology in mapping soil carbon. Herein, to advance existing knowledge and highlight new directions, the article reviews the research on mapping soil carbon in cropland from 2005 to 2021. There is a significant shift from linear statistical models to machine learning models because nonlinear models may be more efficient in explaining the complex soil-environment relationship. Climate covariates and parent material play an important role in soil carbon on the regional scale, while on a local scale, the variability of soil carbon often depends on topography, agricultural management, and soil properties. Recently, several kinds of agricultural covariates have been explored in mapping soil carbon based on survey or remote sensing technique, while, obtaining agricultural covariates with high resolution remains a challenge. Based on the review, we concluded several challenges in three categories: sampling, agricultural covariates, and representation of soil processes in models. We thus propose a conceptual framework with four future strategies: representative sampling strategies, establishing standardized monitoring and sharing system to acquire more efficient crop management information, exploring time-series sensing data, as well as integrating pedological knowledge into predictive models. It is intended that this review will support prospective researchers by providing knowledge clusters and gaps concerning the digital mapping of soil carbon in cropland.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3