Yield- and protein-neutral reduction in fertilizer rate for wheat, maize and rice can reduce the release of reactive nitrogen and greenhouse gas emissions in China

Author:

Hu ChangluORCID,Sadras Victor O,Wang Zhaodong,Du Wenting,Lei Xiaoxiao,Yang Maolin,Zhao Longcai,Zhang Panxin,Liu Junmei,Lu Guoyan,Yang Xueyun,Zhang Shulan

Abstract

Abstract Seeking food security, contemporary Chinese agriculture has followed a trajectory of overfertilization and associated environmental problems, hence the need for nitrogen-balancing practices that do not compromise yield and quality. Here we present a national meta-analysis using 224 studies with 1972 comparisons to quantify the potential to reduce nitrogen (N) fertilization to improve environmental outcomes while maintaining yield and grain protein. We calculated a nitrogen reduction ratio (NRR), as 100 × (N CN T)/N C; where N is N fertilizer rate and subscripts indicate farmer practice (C) and reduced N rate treatment (T). Our meta-analysis showed that the NRR that maintained yield and grain protein content at the level of current practice was up to 10% in wheat and up to 30% in maize and rice. Larger yield-neutral NRR could be achieved in more fertile, heavier-textured soils, and with practices including enhanced-efficiency N fertilizer, combined application of organic and inorganic N fertilizer, and incorporated straw. Assuming a reduction in N fertilizer usage by 10% for wheat and by 30% for maize and rice in the current cropping area, there is a potential to save 5.7 Mt N yr−1; reduce loss of reactive nitrogen by 1.26 Mt N yr−1, equivalent to 63% of annual total Nr losses for rice in China, reduce N-related greenhouse emissions by 75.2 Mt CO2-eq yr−1, equivalent to 14.5%–25% of the emissions associated with the N fertilizer chain in China; and improve N use efficiency by 23%. Our results highlight the feasibility of maintaining yield and grain protein, and achieving substantial environmental benefits with reduced fertilization rate, and the environmental and agronomic scenarios where these outcomes are more likely.

Funder

Fundamental Research Funds for the Central Universities

Special funds for the operation and maintenance of scientific research facilities of Ministry of Agriculture and Rural Affairs of P.R. China

National Key R&D Program of China

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3