Airborne geophysical method images fast paths for managed recharge of California’s groundwater

Author:

Knight Rosemary,Steklova Klara,Miltenberger Alex,Kang Seogi,Goebel Meredith,Fogg GrahamORCID

Abstract

Abstract Given the substantial groundwater level declines in the Central Valley of California, there is an urgent need to supplement the recharge of the groundwater systems by implementing managed aquifer recharge. With approximately 170 km3 (140 million acre-feet) of available groundwater storage space, water deemed to be excess during wet years could be spread on the ground surface at selected locations allowing it to move downward to recharge the underlying aquifer system. Along the eastern edge of the Central Valley there are large paleovalleys that can act as fast paths expediting the downward movement of water. These paleovalleys, incised and then filled with coarse-grained materials—sand, gravel, cobbles—at the end of the last glacial period, are referred to as incised valley fill (IVF) deposits. An IVF deposit has been mapped at one location in the Kings River alluvial fan, with others proposed to exist in the fans of major rivers. If located, these deposits would be optimal sites for managed recharge. In this study, we assessed the use of a helicopter-deployed geophysical method to efficiently locate IVF deposits throughout the Central Valley. We acquired 542 line-kilometers of airborne electromagnetic (AEM) data in the Kings River alluvial fan, with dense line-spacing over the Kings River IVF deposit which had been mapped as ∼2 km wide, extending over 20 km into the Central Valley, from the ground surface to a depth of 30 m. The IVF deposit was unambiguously imaged in the AEM data as an extensive linear feature that was more electrically resistive than the surrounding materials due to the high percentage of coarse-grained sediments. This study provides the evidence to support the rapid adoption of the AEM method to locate IVF deposits along the eastern edge of the Central Valley. These deposits provide valuable natural infrastructure for recharging California’s groundwater.

Funder

Stanford Center for Earth Resources Forecasting

Gordon and Betty Moore Foundation

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3