Experimental warming affects soil carbon dynamics in boreal and temperate forests: a meta-analysis

Author:

Xu Shan,Ou Jie,Qiao Xinxin,Zeng ZhenzhongORCID,Wang JunjianORCID

Abstract

Abstract Boreal and temperate forests, spanning cold mid- to high-latitude environments and encompassing about 43% of the global forest area, are highly vulnerable to warming. Understanding the response of soil carbon (C) dynamics in these forests to warming is of paramount importance, yet significant uncertainty remains. In this meta-analysis, data from 97 studies across 65 sites were synthesized to investigate the effects of warming on soil C inputs, pools, and outputs in boreal and temperate forests. Our results reveal that warming increased aboveground biomass (by 33%) and litterfall (by 15%), while decreasing litter mass remaining (by 7%), with no significant change observed in fine root biomass. Furthermore, warming led to a 9% increase in soil total respiration and a 15% increase in autotrophic respiration, yet had no discernible impact on soil organic carbon (SOC) content. The methods, magnitude, and duration of warming were found to regulate the responses of soil C dynamics. Buried heater warming elicited the most pronounced effects among warming methods. Additionally, soil total respiration exhibited an acclimation response to warming magnitude and duration, while litter decomposition rates increased and SOC content and microbial biomass C decreased with escalating warming magnitude. Moreover, greater soil respiration response occurred in temperate forests than in boreal forests. These findings underscore the nuanced and context-dependent nature of soil C dynamics in response to experimental warming, providing critical insights for understanding the role of boreal and temperate forests in future climate change mitigation strategies.

Funder

Guangdong Basic and Applied Basic Research Foundation

Key Platform and Scientific Research Projects of the Guangdong Provincial Education Department

High-level University Special Fund

National Natural Science Foundation of China

Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3