Using Lidar technology to assess regional air pollution and improve estimates of PM2.5 transport in the North China Plain

Author:

Xiang YanORCID,Lv Lihui,Chai Wenxuan,Zhang Tianshu,Liu JianguoORCID,Liu Wenqing

Abstract

Abstract Air pollutants seriously impact climate change and human health. In this study, the gridpoint statistical interpolation (GSI) three-dimensional variational data assimilation system was extended from ground data to vertical profile data, which reduced the simulation error of the model in the vertical layer. The coupled GSI-Lidar-WRF-Chem system was used to improve the accuracy of fine particulate matter (PM2.5) simulation during a wintertime heavy pollution event in the North China Plain in late November 2017. In this experiment, two vehicle-mounted Lidar instruments were utilized to make synchronous observations around the 6th Ring Road of Beijing, and five ground-based Lidars were used for long-term network observations on the North China Plain. Data assimilation was then performed using the PM2.5 vertical profile retrieved from the seven Lidars. Compared with the model results, the correlation of assimilation increased from 0.74–0.86, and the root-mean-square error decreased by 36.6%. Meanwhile, the transport flux and transport flux intensity of the PM2.5 were analyzed, which revealed that the PM2.5 around the 6th Ring Road of Beijing was mainly concentrated below 1.8 km, and there were obvious double layers of particles. Particulates in the southwest were mainly input, while those in the northeast were mainly output. Both the input and output heights were around 1 km, although the input intensity was higher than the output intensity. The GSI-Lidar-WRF-Chem system has great potential for air quality simulation and forecasting.

Funder

National Key Project of MOST

Natural Science Foundation of Anhui Province

Doctoral Scientific Research Foundation of Anhui University

National Research Program for Key Issues in Air Pollution Control

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3