Critical mineral constraints in global renewable scenarios under 1.5 °C target

Author:

Wang Peng,Chen Wei-Qiang,Cui XueqinORCID,Li Jiashuo,Li Wen,Wang Chenyang,Cai WenjiaORCID,Geng Xinyi

Abstract

Abstract To avoid catastrophic climate change, the world is promoting a fast and unprecedented transition from fuels to renewables. However, the infrastructures of renewables, such as wind turbines and solar cells, rely heavily on critical minerals like rare earths, indium, etc. Such interactions between climate targets, energy transitions, and critical minerals were widely overlooked in the present climate scenario analysis. This study aims to fill this gap through an introduction of metal–energy–climate nexus framework with its application on global energy transition towards a carbon-neutral (or below 1.5 °C) target, in which six state-of-the-art integrated assessment models (IAMs) under different shared socioeconomic pathways were applied. Our analysis revealed that climate mitigation is expected to boost significantly the critical mineral demand by 2.6–267-fold, which varies greatly by IAM models. Solar power development may be constrained by tellurium (Te) and selenium (Se) shortage, while wind power will be jeopardized by the limited scalability of rare earth production. Moreover, a more sustainable pathway may come at higher demand for critical minerals along with higher renewable ratios. Consequently, a holistic investigation of the interaction of mineral, energy, and climate systems is highly recommended for future scenario designing.

Funder

GEIGC

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Reference59 articles.

1. Material efficiency: a white paper;Allwood;Resour. Conserv. Recycl.,2011

2. Energy critical elements: securing materials for emerging technologies,2011

3. Operationalizing the net-negative carbon economy;Bednar;Nature,2021

4. Devising mineral resource supply pathways to a low-carbon electricity generation by 2100;Boubault;Resources,2019

5. MEDEAS: a new modeling framework integrating global biophysical and socioeconomic constraints;Capellán-Pérez;Energy Environ. Sci.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3