Trends and legacy of freshwater salinization: untangling over 50 years of stream chloride monitoring

Author:

Mazumder BhaswatiORCID,Wellen ChristopherORCID,Kaltenecker GeorginaORCID,Sorichetti Ryan JORCID,Oswald Claire JORCID

Abstract

Abstract Excessive use of road salts to maintain safe winter travel conditions leads to increasing chloride (Cl) concentrations in streams, damaging the structure and function of freshwater ecosystems. Long-term increasing stream Cl trends are generally attributed to increases in urban land cover, however recent research shows that even relatively rural streams can retain Cl and exceed water quality guidelines in summer after road salting has stopped. Untangling the relative influences of long-term changes in streamflow and urban growth on Cl trends is critical for making informed decisions about road salt management. The portion of Cl trends not explained by changes in streamflow or urban growth could be due to changes in road salt application rates and/or legacy Cl in groundwater that is slowly making its way to streams. This study assessed seasonal, long-term stream Cl trends across the Province of Ontario, Canada, where urbanization accelerated and road salt management plans started to develop since early 2000s. We compared stream Cl trends over salting and non-salting seasons with urban growth estimates from two independent time periods, 1965–1995 and 2002–2018. For a subset of sites with sufficient flow data in the periods analyzed, we parsed the seasonal trends into flow and management trend components. We found that most of the variance in the management trend component in the winter salting season could be explained by urbanization, while about half of it could be explained in the summer non-salting season. We further analyzed Cl estimates in low-flow conditions to explore the extent of subsurface contributions to Cl trends, and concluded with a summary of challenges and recommendations for future studies on road salt legacy in streams.

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Reference66 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3