Convection in future winter storms over Northern Europe

Author:

Berthou SégolèneORCID,J Roberts MalcolmORCID,Vannière BenoîtORCID,Ban NikolinaORCID,Belušić DanijelORCID,Caillaud CécileORCID,Crocker ThomasORCID,de Vries HylkeORCID,Dobler Andreas,Harris DanORCID,J Kendon ElizabethORCID,Landgren OskarORCID,Manning ColinORCID

Abstract

Abstract Precipitation within extratropical cyclones is very likely to increase towards the end of the century in a business-as-usual scenario. We investigate hourly precipitation changes in end-of-century winter storms with the first km-scale model ensemble covering northwest Europe and the Baltic region. This is an ensemble that explicitly represents convection (convection permitting models (CPMs)). Models agree that future winter storms will bring 10%–50% more precipitation, with the same level of light precipitation but more moderate and heavy precipitation, together with less frequent frozen precipitation. The warm sector precipitation rates will get closer (up to similar) to those in present-day autumn storms, along with higher convective available potential energy and convective inhibition, suggesting more convection embedded in storms. To the first order, mean hourly precipitation changes in winter storms are driven by temperature increase (with little relative humidity changes) and storm dynamical intensity (more uncertain), both captured by regional climate models (RCMs). The CPMs agree with this, and in addition, most CPMs show more increase in intense precipitation in the warm sector of storms compared to their parent RCM.

Funder

European Union’s Horizon 2020 EUCP

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3