Quantitative attribution of historical anthropogenic warming on the extreme rainfall event over Henan in July 2021

Author:

Zhao DajunORCID,Xu Hongxiong,Wang Hui,Yu Yubin,Duan Yihong,Chen Lianshou

Abstract

Abstract The ‘21·7’ Henan extreme rainfall event (HNER) caused severe damage and many fatalities. The daily precipitation during this event (from 1200 UTC on 19 July 2021–1200 UTC on 20 July 2021) was 552.5 mm and the maximum hourly precipitation was 201.9 mm (at 0900 UTC on 20 July 2021). Previous studies have suggested that an evaluation of the role of anthropogenic climate change in extreme rainfall events is crucial in disaster prevention and mitigation under the current global climate crisis. We examined the changes in the coverage and intensity of extreme rainfall during the ‘21·7’ HNER event under anthropogenic climate change using a set of convective permitting simulations. Our results showed that the regional-average magnitude of the 48 h accumulated rainfall during the ‘21·7’ HNER was increased by 5.7% (95% confidence interval: 4%–11%), which is in agreement with the Clausius–Clapeyron rate, while the area of extreme rainfall (⩾500 mm) increased by 29.9% (95% confidence interval: 21%–40%) as a result of anthropogenic climate change over the Henan region during the late 20th century. Anthropogenic climate change has led to a warm moist tongue over the target region, which has increased the column-integrated water vapor content and induced an anomalous cyclone–anticyclone pair. Anthropogenic warming has caused stronger southerly and southeasterly winds, leading to stronger convergence in the lower troposphere, stronger updrafts in the mid-troposphere and stronger divergent winds in the upper levels. These effects have all contributed to the increase in rainfall. These results enhance our understanding of the dynamic effects of anthropogenic warming on the ‘21·7’ HNER and provide additional evidence that anthropogenic warming increased the magnitude of the ‘21·7’ HNER in China.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3