Effects of changing climate extremes and vegetation phenology on wildlife associated with grasslands in the southwestern United States

Author:

Creech Tyler GORCID,Williamson Matthew AORCID,Sesnie Steven E,Rubin Esther S,Cayan Daniel R,Fleishman EricaORCID

Abstract

Abstract Assessments of the potential responses of animal species to climate change often rely on correlations between long-term average temperature or precipitation and species’ occurrence or abundance. Such assessments do not account for the potential predictive capacity of either climate extremes and variability or the indirect effects of climate as mediated by plant phenology. By contrast, we projected responses of wildlife in desert grasslands of the southwestern United States to future climate means, extremes, and variability and changes in the timing and magnitude of primary productivity. We used historical climate data and remotely sensed phenology metrics to develop predictive models of climate-phenology relations and to project phenology given anticipated future climate. We used wildlife survey data to develop models of wildlife-climate and wildlife-phenology relations. Then, on the basis of the modeled relations between climate and phenology variables, and expectations of future climate change, we projected the occurrence or density of four species of management interest associated with these grasslands: Gambel’s Quail (Callipepla gambelii), Scaled Quail (Callipepla squamat), Gunnison’s prairie dog (Cynomys gunnisoni), and American pronghorn (Antilocapra americana). Our results illustrated that climate extremes and plant phenology may contribute more to projecting wildlife responses to climate change than climate means. Monthly climate extremes and phenology variables were influential predictors of population measures of all four species. For three species, models that included climate extremes as predictors outperformed models that did not include extremes. The most important predictors, and months in which the predictors were most relevant to wildlife occurrence or density, varied among species. Our results highlighted that spatial and temporal variability in climate, phenology, and population measures may limit the utility of climate averages-based bioclimatic niche models for informing wildlife management actions, and may suggest priorities for sustained data collection and continued analysis.

Funder

Southwest Climate Adaptation Science Center

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Reference79 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3