Three-decadal destabilization of vegetation activity on the Mongolian Plateau

Author:

Zhao Xia,Shen Haihua,Geng XiaoqingORCID,Fang Jingyun

Abstract

Abstract Steppes on the Mongolian Plateau, mainly within the Republic of Mongolia and the Inner Mongolia Autonomous Region (IMAR) of China, have been subjected to widespread degradation as a result of climate change and human utilization. Field experiments and long-term observations suggest that the productivity of degraded grassland ecosystems might show greater instability, i.e. stronger interannual variation in vegetation activities, when driven by climate change. However, it remains unknown whether this hypothesized destabilization of steppe vegetation activity has occurred in the past three decades and how this destabilization has fed back to livestock production on the plateau. Herein, we define temporal instability of vegetation activity using three indicators, the start and end of the growing season as indicated by the normalized difference vegetation index (NDVI) and the mean growing-season NDVI, and examine their trends between 1983 and 2015. Our results show a significant destabilization of vegetation activity over a large proportion of the total steppe area. Compared with the IMAR, vegetation destabilization has occurred to a significantly higher extent in Mongolia. Climate warming, drying and interannual climate variability accounted for approximately 60%–80% of the vegetation destabilization. The destabilization of steppe productivity was significantly associated with the interannual variability of livestock production in Mongolia, while the interannual variability of steppe productivity and livestock production were decoupled in the IMAR. Our findings highlight the need to improve livestock production systems and conserve degraded grasslands for sustainable development in view of the destabilization of steppe productivity on the Mongolian Plateau.

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3