Probabilistic neural method combined with radial-bias functions applied to reservoir characterization in the Algerian Triassic province
Author:
Publisher
Oxford University Press (OUP)
Subject
Management, Monitoring, Policy and Law,Industrial and Manufacturing Engineering,Geology,Geophysics
Reference30 articles.
1. Reservoir parameter estimation using a hybrid neural network
Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Prospect Evaluation of the Cretaceous Yageliemu Clastic Reservoir Based on Geophysical Log Data: A Case Study from the Yakela Gas Condensate Field, Tarim Basin, China;Energies;2023-03-14
2. Acoustic Log Prediction on the Basis of Kernel Extreme Learning Machine for Wells in GJH Survey, Erdos Basin;Journal of Electrical and Computer Engineering;2017
3. Evaluating distribution pattern of petrophysical properties and their monitoring under a hybrid intelligent based method in southwest oil field of Iran;Arabian Journal of Geosciences;2016-12-28
4. Velocity Inversion for Sandstone Reservoir Based on Extreme Learning Machine Neural Network;2015 First International Conference on Computational Intelligence Theory, Systems and Applications (CCITSA);2015-12
5. Extreme Learning Machine for Reservoir Parameter Estimation in Heterogeneous Sandstone Reservoir;Mathematical Problems in Engineering;2015
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3