Radioactive hot-spot localisation and identification using deep learning

Author:

Mendes Filipe,Barros Miguel,Vale AlbertoORCID,Gonçalves BrunoORCID

Abstract

Abstract The detection of radioactive hot-spots and the identification of the radionuclides present have been a challenge for the security sector, especially in situations involving chemical, biological, radiological, nuclear and explosive threats, as well as naturally occurring radioactive materials. This work proposes a solution based on Machine Learning techniques, with a focus on artificial neural networks (NNs), in order to localise, quantify and identify radioactive sources. Firstly, the created RHLnet model uses observations of radiological intensity counts and corresponding localisations to estimate the number, location and activity of unknown radioactive sources present in a given scenario. Then, another model (RHIdnet) gets the gamma spectrum of the sources to perform the identification of the corresponding radionuclides. For this, a training data set composed of simulated data is used during the training process, and so, using algorithms with the models already trained, fast and accurate predictions are achieved, ensuring the reliability of such a NN-based approach. The proposed solution is tested in simulated and real scenarios, with multiple sources, providing a low number of limitations, related to possible false negatives and false positives. Besides, the results have shown that the algorithm is scalable for very large regions, as well as for very small scenarios. Single and multiple isotope identification on each sample is explored, highlighting the benefits as well as possible improvements. Thus, NNs have demonstrated the capability of being an emerging tool with the potential to make a difference in the nuclear field, by helping in the development of novel techniques and new solutions in order to safeguard human lives.

Funder

Portuguese Foundation for Science and Technology

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,Waste Management and Disposal,General Medicine

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3