A highly scalable and autonomous spectroscopic radiation mapping system with resilient IoT detector units for dosimetry, safety and security

Author:

Russell-Pavier Frederick SORCID,Kaluvan Suresh,Megson-Smith David,Connor Dean T,Fearn Samuel J,Connolly Euan L,Scott Thomas B,Martin Peter GORCID

Abstract

Abstract Technologies utilizing radiological materials across power generation, defence, industry, research and medicine have increased the global inventory of highly active and hazardous materials. Consequently, an amplified threat exists of illicitly obtained materials being used as part of hostile acts. The potential for intentional releases occurs alongside risks from natural disasters or facility accidents. In any such event, it is crucial to rapidly assess the release composition and extent of response and remediation activities. Therefore, the deployment of an effective, resilient and autonomous radiation monitoring network is pivotal both during and after an incident. Underpinning this assessment is a detailed understanding of the pre-event or background, radiation levels, the knowledge of which is also essential in assessing a population’s dosimetric exposure to, and impact from anthropogenic and naturally occurring/varying sources of ionizing radiation. Presented here is a fully operational cloud-based spectroscopic radiation mapping platform comprising IoT modules compatible with cellular networks, without modification, in over 180 countries. Combined with locally roaming vehicles, a continuous multi-pass radiological characterization of an urban environment was performed. Such IoT devices are deployable as either individual sensors for specific localized temporal events or integrated over a greater time period (and area) to represent a larger static sensor. Over several months of continued operation, more than 1000 000 individual location-referenced gamma-ray spectra were collected and securely uploaded, in real-time, to an online cloud database and automatically characterized via a custom multi-step workflow. Fine-scale local variations in the radiological fingerprint of a 1 km × 1 km urban area were subsequently rendered in near-real-time to an interactive secure online graphical dashboard for temporal, spatial and spectral interrogation by the user. Considerations for the automated ‘elastic’ handling of ever-expanding volumes of input data have been carried out, facilitating propagation and expansion of the system’s database without human input.

Funder

Robotics and AI in Nuclear

National Centre for Nuclear Robotics

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,Waste Management and Disposal,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3