A biokinetic model for systemic sodium

Author:

Samuels CaleighORCID,Leggett Rich

Abstract

Abstract This paper describes an updated biokinetic model for systemic sodium (Na), developed for use in a series of reports by the International Commission on Radiological Protection (ICRP) on occupational intake of radionuclides. In contrast to the ICRP’s previous model for intake of radio-sodium by workers, the updated model depicts realistic directions of movement of Na in the body including recycling of activity between blood and tissues. The updated model structure facilitates extension of the baseline transfer coefficients for adults to different age groups and to special exposure scenarios such as transfer of radio-sodium from the mother to the foetus or the nursing infant. Dose coefficients for 22Na and 24Na based on the updated model generally do not differ greatly from those based on the ICRP’s previous Na model when both models are connected to the ICRP’s latest dosimetry system. The main exception is that the updated model yields roughly twofold higher dose coefficients for endosteal bone surface than does the previous model due to the dosimetrically cautious assumption in the updated model that exchangeable Na in bone resides on bone surface.

Funder

U.S. Environmental Protection Agency

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,Waste Management and Disposal,General Medicine

Reference60 articles.

1. New isotope of 39Na and the neutron dripline of neon isotopes using a 345 MeV/nucleon 48Ca beam;Ahn;RIKEN Accel. Prog. Rep.,2018

2. Imaging salt uptake dynamics in plants using PET;Ariño-Estrada;Sci. Rep.,2019

3. Minimal sodium losses through the skin;Arn;J. Clin. Invest.,1950

4. The NUBASE2016 evaluation of nuclear properties;Audi;Chin. Phys. C,2017

5. Sweat rate and sodium loss during work in heat;Bates;J. Occup. Med. Toxicol.,2008

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3