Radioactivity of residues from waste incineration facilities in Finland

Author:

Kallio AnttiORCID,Virtanen Sinikka,Leikoski Niina,Iloniemi Eeva,Kämäräinen Meerit,Hildén Timo,Mattila Aleksi

Abstract

Abstract Waste incineration in Europe has been increasing in the past few decades as there is a need to reduce the burden on landfills and their associated environmental concerns. While incineration reduces the volume of the waste, the volume of slag and ash is still substantial. To find out potential radiation risks that incineration residues could set to workers or the public, the levels of radioactive elements in these residues were investigated from nine waste incineration plants in Finland. Natural and artificial radionuclides were detected in the residues, but in general the activity concentrations were low. This study shows that the level of Cs-137 in the fly ash from municipal waste incineration follows the pattern of 1986 fallout zones in Finland, although the levels are significantly lower than in ash from bioenergy production from the same areas. Am-241 was also detected in many samples, although the activity concentrations were very low. Based on the findings in this study, the typical ash and slag residues from municipal waste incineration do not need radiation protection measures for workers or the public even in regions that received up to 80 kBq m−2 of Cs-137 fallout in 1986. The further use of these residues need not be restricted due to radioactivity. Hazardous waste incineration residues and other special cases need to be considered separately, depending on the original waste composition.

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,Waste Management and Disposal,General Medicine

Reference41 articles.

1. Resolution adopted by the General Assembly on 25 September 2015. Transforming our world: the 2030 agenda for sustainable development,2015

2. The European green deal,2019

3. A new circular economy action plan for a cleaner and more competitive Europe,2020

4. Municipal waste statistics,2023

5. Radioactivity in size-separated municipal incinerator ashes;Kitto;Health Phys.,1992

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3