Abstract
Abstract
Nitrogen-vacancy (NV) defect centers in diamond are key to applications in quantum sensing and quantum computing. They create localized electronic states in the diamond lattice with distinct population relaxation pathways following photoexcitation that ultimately enable its unique properties. The defect is known to exist in two charge states: neutral and negative, with respectively one and two known optically-active electronic transitions. Here, we report on the observation of a large number of hitherto undiscovered excited electronic states in both charge states as evidenced by distinct optical transitions in the infrared to ultraviolet part of the spectrum. These transitions are observed by monitoring the electronic relaxation of NV centers after photoexcitation using transient absorption spectroscopy, directly probing transient phenomena occurring on timescales from femtoseconds to microseconds. We also for the first time probed the electron transfer dynamics from the
3
E
state of NV− to nearby single-substitutional nitrogen defects (N
s
) that leads to the well-known effect of NV photoluminescence quenching.