Abstract
Abstract
In recent years, hole-spin qubits based on semiconductor quantum dots have advanced at a rapid pace. We first review the main potential advantages of these hole-spin qubits with respect to their electron-spin counterparts and give a general theoretical framework describing them. The basic features of spin–orbit coupling and hyperfine interaction in the valence band are discussed, together with consequences on coherence and spin manipulation. In the second part of the article, we provide a survey of experimental realizations, which spans a relatively broad spectrum of devices based on GaAs, Si and Si/Ge heterostructures. We conclude with a brief outlook.
Funder
Fonds de Recherche—Nature et Technologies
National Science Association Funds
National Natural Science Foundation of China
Australian Research Council Centre of Excellence in Future Low-Energy Electronics Technologies
Natural Sciences and Engineering Research Council of Canada
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献