Understanding the physiological transmission mechanisms of photoplethysmography signals: a comprehensive review

Author:

Li KaiORCID,Sun JiuaiORCID

Abstract

Abstract Objective. The widespread adoption of Photoplethysmography (PPG) as a non-invasive method for detecting blood volume variations and deriving vital physiological parameters reflecting health status has surged, primarily due to its accessibility, cost-effectiveness, and non-intrusive nature. This has led to extensive research around this technique in both daily life and clinical applications. Interestingly, despite the existence of contradictory explanations of the underlying mechanism of PPG signals across various applications, a systematic investigation into this crucial matter has not been conducted thus far. This gap in understanding hinders the full exploitation of PPG technology and undermines its accuracy and reliability in numerous applications. Approach. Building upon a comprehensive review of the fundamental principles and technological advancements in PPG, this paper initially attributes the origin of PPG signals to a combination of physical and physiological transmission processes. Furthermore, three distinct models outlining the concerned physiological transmission processes are synthesized, with each model undergoing critical examination based on theoretical underpinnings, empirical evidence, and constraints. Significance. The ultimate objective is to form a fundamental framework for a better understanding of physiological transmission processes in PPG signal generation and to facilitate the development of more reliable technologies for detecting physiological signals.

Publisher

IOP Publishing

Reference86 articles.

1. Reflectance photoplethysmography as noninvasive monitoring of tissue blood perfusion;Abay;IEEE Trans. Biomed. Eng.,2015

2. Photoplethysmography;Alian;Best Pract. Res. Clin. Anaesthesiol.,2014

3. Photoplethysmography and its application in clinical physiological measurement;Allen;Physiol. Meas.,2007

4. Optical properties of human skin;Anderson,1982

5. Pulse oximetry: its invention, theory, and future;Aoyagi;J. Anesth.,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3