Technical aspects of cardiorespiratory estimation using subspace projections and cross entropy

Author:

Morales JohnORCID,Moeyersons JonathanORCID,Testelmans DriesORCID,Buyse BertienORCID,Borzée PascalORCID,Van Hoof ChrisORCID,Groenendaal WillemijnORCID,Van Huffel SabineORCID,Varon CarolinaORCID

Abstract

Abstract Background. Respiratory sinus arrhythmia (RSA) is a form of cardiorespiratory coupling. Its quantification has been suggested as a biomarker to diagnose different diseases. Two state-of-the-art methods, based on subspace projections and entropy, are used to estimate the RSA strength and are evaluated in this paper. Their computation requires the selection of a model order, and their performance is strongly related to the temporal and spectral characteristics of the cardiorespiratory signals. Objective. To evaluate the robustness of the RSA estimates to the selection of model order, delays, changes of phase and irregular heartbeats as well as to give recommendations for their interpretation on each case. Approach. Simulations were used to evaluate the model order selection when calculating the RSA estimates introduced before, as well as three different scenarios that can occur in signals acquired in non-controlled environments and/or from patient populations: the presence of irregular heartbeats; the occurrence of delays between heart rate variability (HRV) and respiratory signals; and the changes over time of the phase between HRV and respiratory signals. Main results. It was found that using a single model order for all the calculations suffices to characterize RSA correctly. In addition, the RSA estimation in signals containing more than 5 irregular heartbeats in a period of 5 min might be misleading. Regarding the delays between HRV and respiratory signals, both estimates are robust. For the last scenario, the two approaches tolerate phase changes up to 54°, as long as this lasts less than one fifth of the recording duration. Significance. Guidelines are given to compute the RSA estimates in non-controlled environments and patient populations.

Funder

Vlaamse regering

EIT

Fonds voor Wetenschappelijk Onderzoek-Vlaanderen

Bijzonder Onderzoeksfonds

IMEC

Agentschap Innoveren en Ondernemen

EU H2020

Publisher

IOP Publishing

Subject

Physiology (medical),Biomedical Engineering,Physiology,Biophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3