Managing erroneous measurements of dynamic brain electrical impedance tomography after reconnection of faulty electrodes

Author:

Li HaotingORCID,Liu Xuechao,Xu Canhua,Yang BinORCID,Fu Danchen,Dong Xiuzhen,Fu Feng

Abstract

Abstract Objective: Electrode detachment may occur during dynamic brain electrical impedance tomography (EIT) measurements. After the faulty electrodes have been reset, EIT can restore to steady monitoring but the corrupted data, which will challenge interpretation of the results, are notoriously difficult to recover. Approach: Here, a piecewise processing method (PPM) is introduced to manage the erroneous EIT data after reattachment of faulty electrodes. In the PPM, we define the three phases before, during and after reconnection of the faulty electrode as PI, PII and PIII, respectively. Using this definition, an empirical mode decomposition-based interpolation method is introduced to compensate the corrupted data in PII, using the valid measurements in PI and PIII. Then, the compensated data in PII are spliced at the end of PI. Thus, there will be a surge at the junction of PII and PIII due to the changes in contact state of the repositioned electrodes. Finally, to ensure all the EIT data are obtained under constant electrode settings, we calculate the above changes and eliminate them from the data after PII. To verify the performance of the PPM, experiments based on head models, with anatomical structures and with human subjects were conducted. Metrics including permutation entropy (PE) and image correlation (IC) were proposed to measure the stability of the signal and the quality of the reconstructed EIT images, respectively. Main results: The results demonstrated that the PE of the processed data was reduced to 0.25 and the IC improved to 0.78. Significance: Without iterative calculations the PPM could efficiently manage the erroneous EIT data after reattachment of the faulty electrodes.

Funder

National Natural Science Foundation of China

Shaanxi Province Key Research and Development Plan

Publisher

IOP Publishing

Subject

Physiology (medical),Biomedical Engineering,Physiology,Biophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3