Extraction of cardiac-related signals from a suprasternal pressure sensor during sleep

Author:

Cerina LucaORCID,Papini Gabriele BORCID,Fonseca PedroORCID,Overeem Sebastiaan,van Dijk Johannes P,Vullings Rik

Abstract

Abstract Objective. The accurate detection of respiratory effort during polysomnography is a critical element in the diagnosis of sleep-disordered breathing conditions such as sleep apnea. Unfortunately, the sensors currently used to estimate respiratory effort are either indirect and ignore upper airway dynamics or are too obtrusive for patients. One promising alternative is the suprasternal notch pressure (SSP) sensor: a small element placed on the skin in the notch above the sternum within an airtight capsule that detects pressure swings in the trachea. Besides providing information on respiratory effort, the sensor is sensitive to small cardiac oscillations caused by pressure perturbations in the carotid arteries or the trachea. While current clinical research considers these as redundant noise, they may contain physiologically relevant information. Approach. We propose a method to separate the signal generated by cardiac activity from the one caused by breathing activity. Using only information available from the SSP sensor, we estimate the heart rate and track its variations, then use a set of tuned filters to process the original signal in the frequency domain and reconstruct the cardiac signal. We also include an overview of the technical and physiological factors that may affect the quality of heart rate estimation. The output of our method is then used as a reference to remove the cardiac signal from the original SSP pressure signal, to also optimize the assessment of respiratory activity. We provide a qualitative comparison against methods based on filters with fixed frequency cutoffs. Main results. In comparison with electrocardiography (ECG)-derived heart rate, we achieve an agreement error of 0.06 ± 5.09 bpm, with minimal bias drift across the measurement range, and only 6.36% of the estimates larger than 10 bpm. Significance. Together with qualitative improvements in the characterization of respiratory effort, this opens the development of novel portable clinical devices for the detection and assessment of sleep disordered breathing.

Publisher

IOP Publishing

Subject

Physiology (medical),Biomedical Engineering,Physiology,Biophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3