An effective hybrid feature selection using entropy weight method for automatic sleep staging

Author:

Wang WeiboORCID,Li Junwen,Fang YuORCID,Zheng Yongkang,You Fang

Abstract

Abstract Objective. Sleep staging is the basis for sleep quality assessment and diagnosis of sleep-related disorders. In response to the inadequacy of traditional manual judgement of sleep stages, using machine learning techniques for automatic sleep staging has become a hot topic. To improve the performance of sleep staging, numerous studies have extracted a large number of sleep-related characteristics. However, there are redundant and irrelevant features in the high-dimensional features that reduce the classification accuracy. To address this issue, an effective hybrid feature selection method based on the entropy weight method is proposed in this paper for automatic sleep staging. Approach. Firstly, we preprocess the four modal polysomnography (PSG) signals, including electroencephalogram (EEG), electrooculogram (EOG), electrocardiogram (ECG) and electromyogram (EMG). Secondly, the time domain, frequency domain and nonlinear features are extracted from the preprocessed signals, with a total of 185 features. Then, in order to acquire characteristics of the multi-modal signals that are highly correlated with the sleep stages, the proposed hybrid feature selection method is applied to choose effective features. This method is divided into two stages. In stage I, the entropy weight method is employed to combine two filter methods to build a subset of features. This stage evaluates features based on information theory and distance metrics, which can quickly obtain a subset of features and retain the relevant features. In stage II, Sequential Forward Selection is used to evaluate the subset of features and eliminate redundant features. Further more, to achieve better performance of classification, an ensemble model based on support vector machine, K-nearest neighbor, random forest and multilayer perceptron is finally constructed for classifying sleep stages. Main results. The experiment using the Cyclic Alternating Pattern (CAP) sleep database is performed to assess the performance of the method proposed in this paper. The proposed hybrid feature selection method chooses only 30 features highly correlated to sleep stages. The accuracy, F1 score and Kappa coefficient of 6 class sleep staging reach 88.86%, 83.15% and 0.8531%, respectively. Significance. Experimental results show the effectiveness of the proposed method compared to the existing state-of-the-art studies. It greatly reduces the number of features required while achieving outstanding auto-sleep staging results.

Funder

Chunhui Project Foundation of the Education Department of China

Publisher

IOP Publishing

Subject

Physiology (medical),Biomedical Engineering,Physiology,Biophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3