Time delays between physiological signals in interpreting the body’s responses to intermittent hypoxia in obstructive sleep apnea

Author:

Li Geng,Zhou Mengwei,Huang Xiaoqing,Ji Changjin,Fan Tingting,Xu Jinkun,Xiong Huahui,Huang YaqiORCID

Abstract

Abstract Objective. Intermittent hypoxia, the primary pathology of obstructive sleep apnea (OSA), causes cardiovascular responses resulting in changes in hemodynamic parameters such as stroke volume (SV), blood pressure (BP), and heart rate (HR). However, previous studies have produced very different conclusions, such as suggesting that SV increases or decreases during apnea. A key reason for drawing contrary conclusions from similar measurements may be due to ignoring the time delay in acquiring response signals. By analyzing the signals collected during hypoxia, we aim to establish criteria for determining the delay time between the onset of apnea and the onset of physiological parameter response. Approach. We monitored oxygen saturation (SpO2), transcutaneous oxygen pressure (TcPO2), and hemodynamic parameters SV, HR, and BP, during sleep in 66 patients with different OSA severity to observe body’s response to hypoxia and determine the delay time of above parameters. Data were analyzed using the Kruskal–Wallis test, Quade test, and Spearman test. Main results. We found that simultaneous acquisition of various parameters inevitably involved varying degrees of response delay (7.12–25.60 s). The delay time of hemodynamic parameters was significantly shorter than that of SpO2 and TcPO2 (p< 0.01). OSA severity affected the response delay of SpO2, TcPO2, SV, mean BP, and HR (p < 0.05). SV delay time was negatively correlated with the apnea-hypopnea index (r = −0.4831, p< 0.0001). Significance. The real body response should be determined after removing the effect of delay time, which is the key to solve the problem of drawing contradictory conclusions from similar studies. The methods and important findings presented in this study provide key information for revealing the true response of the cardiovascular system during hypoxia, indicating the importance of proper signal analysis for correctly interpreting the cardiovascular hemodynamic response phenomena and exploring their physiological and pathophysiological mechanisms.

Funder

National Natural Science Foundation of China

National Science and Technology Pillar Program of China

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3