Detection of coronary artery disease using multi-modal feature fusion and hybrid feature selection

Author:

Zhang Huan,Wang Xinpei,Liu Changchun,Liu Yuanyuan,Li Peng,Yao Lianke,Li Han,Wang Jikuo,Jiao Yu

Abstract

Abstract Objective: Coronary artery disease (CAD) is a common fatal disease. At present, an accurate method to screen CAD is urgently needed. This study aims to provide optimal detection models for suspected CAD detection according to the differences in medical conditions, so as to assist physicians to make accurate judgments on suspected CAD patients. Approach: Electrocardiogram (ECG) and phonocardiogram (PCG) signals of 32 CAD patients and 30 patients with chest pain and normal coronary angiograms (CPNCA) were simultaneously collected for this paper. For each subject, the ECG and PCG multi-domain features were extracted, and the results of Holter monitoring, echocardiography (ECHO), and biomarker levels (BIO) were obtained to construct a multi-modal feature set. Then, a hybrid feature selection (HFS) method was developed using mutual information, recursive feature elimination, random forest, and weight of support vector machine to obtain the optimal feature subset. A support vector machine with nested cross-validation was used for classification. Main results: Results showed that the Holter model achieved the best performance as a single-modal feature model with an accuracy of 82.67%. In terms of multi-modal feature models, PCG-Holter, PCG-Holter-ECHO, PCG-Holter-ECHO-BIO, and ECG-PCG-Holter-ECHO-BIO were the optimal bimodal, three-modal, four-modal, and five-modal models, with accuracies of 90.38%, 91.92%, 95.25%, and 96.67%, respectively. Among them, the ECG-PCG-Holter-ECHO-BIO model, which was constructed by combining ECG and PCG signals features with Holter, ECHO, and BIO examination results, achieved the best classification results with an average accuracy, sensitivity, specificity, and F1-measure of 96.67%, 96.67%, 96.67%, and 96.64%, respectively. Significance: The study indicated that multi-modal feature fusion and HFS can obtain more effective information for CAD detection and provide a reference for physicians to diagnose CAD patients.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Physiology (medical),Biomedical Engineering,Physiology,Biophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3