Model-based approach to investigate equipment-induced error in pressure-waveform derived hemodynamic measurements

Author:

Farahmand MasoudORCID,Mirinejad Hossein,Scully Christopher GORCID

Abstract

Abstract Objective. Advanced hemodynamic monitoring systems have provided less invasive methods for estimating pressure-derived measurements such as pressure-derived cardiac output (CO) measurements. These devices apply algorithms to arterial pressure waveforms recorded via pressure recording components that transmit the pressure signal to a pressure monitor. While standards have been developed for pressure monitoring equipment, it is unclear how the equipment-induced error can affect secondary measurements from pressure waveforms. We propose an approach for modelling different components of a pressure monitoring system and use this model-based approach to investigate the effect of different pressure recording configurations on pressure-derived hemodynamic measurements. Approach. The proposed model-based approach is a three step process. (1) Modelling the response of pressure recording components using bench tests; (2) verifying the identified models through nonparametric equivalence tests; and (3) assessing the effects of pressure recording components on pressure-derived measurements. To delineate the application of this approach, we performed a series of model-based analyses to quantify the combined effect of a wide range of tubing configurations with various damping ratios and natural frequencies and monitors with different bandwidths on pressure waveforms and CO measurements by six pulse contour algorithms. Results. Model-based results show the error in pressure-derived CO measurements because of tubing configurations with different natural frequencies and damping ratios. Tubing configurations with low natural frequencies (<23 Hz) altered characteristics of pressure waveforms in a way that affected the CO measurement, some by as much as 20%. Significance. Our method can serve as a tool to quantify the performance of pressure recording systems with different dynamic properties. This approach can be applied to investigate the effects of physiologic signal recording configurations on various pressure-derived hemodynamic measurements.

Funder

CDRH Critical Path Initiative

Publisher

IOP Publishing

Subject

Physiology (medical),Biomedical Engineering,Physiology,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3