A novel method for continuous blood pressure estimation based on a single-channel photoplethysmogram signal

Author:

Hu Qihan,Deng Xintao,Wang Aiguo,Yang Cuiwei

Abstract

Abstract Objective: Currently, continuous blood pressure (BP) measurements are mostly based on multi-sensor combinations and datasets with limited BP ranges. Besides, most BP-related features derive from the photoplethysmogram (PPG) signal. The mechanism of PPG signal formation is not considered. We aimed to design a noninvasive and continuous method for estimation of BP using a single PPG sensor, which takes the mechanism of PPG signal formation into account. Approach: We prepared a dataset containing PPG signals for 294 patients from three public databases for constructing the BP estimation model. The features used in the model consisted of two types: novel features based on a multi-Gaussian model and existing features. The multi-Gaussian model fitted the different components (i.e. the main wave, the dicrotic wave and the tidal wave) of the PPG signal. Ensemble machine learning algorithms were applied to estimate systolic blood pressure (SBP) and diastolic blood pressure (DBP). When partitioning the dataset, there was an overlap between the training set and the testing set. Main results: Datasets with a wide-range of SBP and DBP values (SBP ranging from 74 to 229 mmHg and DBP ranging from 26 to 141 mmHg) were used to evaluate our method. The mean and standard deviation of error for SBP and DBP estimations were −0.21 ± 5.21 mmHg and −0.19 ± 3.37 mmHg, respectively. The model performance fully met the Association for the Advancement of Medical Instrumentation standard and was grade ‘A’ on the British Hypertension Society standard. Significance: The multi-Gaussian model could be used to estimate BP, and our method was able to track a wide range of BP accurately. In addition our method is based on a single PPG sensor, making it very convenient.

Funder

Shanghai Municipal Science and Technology Major Project

Shanghai Science and Technology Support Project

National Natural Science Foundation of China

Project of Shanghai Engineering Research Center

Publisher

IOP Publishing

Subject

Physiology (medical),Biomedical Engineering,Physiology,Biophysics

Reference35 articles.

1. Electrocardiogram-assisted blood pressure estimation;Ahmad;IEEE Trans. Biomed. Eng.,2012

2. Noise cleaning and Gaussian modeling of smart phone photoplethysmogram to improve blood pressure estimation;Banerjee,2015

3. Pulse decomposition analysis of the digital arterial pulse during hemorrhage simulation;Baruch;Nonlinear Biomed. Phys.,2011

4. Random forests;Breiman;Mach. Learn.,2001

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3