A wireless physiological parameter monitoring system with a treatment feedback function during neonatal phototherapy

Author:

He Ziliang,Zhang Benjin,Zhang Jing,Xiao Zhenghua,He Ling,Yang GangORCID

Abstract

Abstract Objective. Neonatal jaundice is a common condition in the early stages of newborns, and phototherapy is a fast, safe and effective method that is used to treat it. However, recent studies have shown that phototherapy may elicit side effects in infants, such as hypothermia, hyperthermia and dehydration. To improve the quality of phototherapy and the prognosis of patients, the changes in neonatal physiological parameters during phototherapy should be monitored to give better feedback to pediatricians or the phototherapy system. However, the current standard of clinical care during neonatal phototherapy with hard-wired devices limits this realization. Approach. Here, we developed a prototype of a neonatal wearable device, which can wirelessly potentially monitor the jaundice value, transepidermal water loss, skin wettedness factor and body orientation during phototherapy, and conducted prototype validation experiments. We also set up user-friendly interfaces and an analysis system on custom software, all designed to make the future addition of data interfaces for treatment feedback functions easier. Main results. The preliminary in vitro experiment demonstrated the effectiveness of simultaneous monitoring of the required physiological parameters. And further suggestions and specific operations are discussed in terms of optimization of the treatment of neonatal jaundice. Significance. It is believed that the established system has the potential to provide a basis for future phototherapy nursing guidelines and physiological monitoring standards.

Funder

Department of Science and Technology of Sichuan Province

National Natural Science Foundation of China

Sichuan University-Dazhou school-local cooperation project

Publisher

IOP Publishing

Subject

Physiology (medical),Biomedical Engineering,Physiology,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3