Application of Fourier-Bessel expansion and LSTM on multi-lead ECG for cardiac abnormalities identification

Author:

Sawant Nidhi Kalidas,Patidar ShivnarayanORCID

Abstract

Abstract Objective. The availability of online electrocardiogram (ECG) repositories can aid researchers in developing automated cardiac abnormality diagnostic systems. Using such ECG repositories, this study aims to develop an algorithm that can assist physicians in diagnosing cardiac abnormalities. Approach. The PhysioNet/CinC 2021 Challenge has opened the venues for creating benchmark algorithms using standard and relatively diverse 12-lead ECG datasets. This work attempts to create a new machine learning approach for identifying common cardiac abnormalities using an ensemble-based classification with two models resulting from two different feature sets. The first feature set extracts RR variability based information by deploying Fourier-Bessel (FB) expansion. The second feature set is composed of time- and frequency-domains-based hand-crafted features. Two long short-term memory (LSTM)-based classifiers are trained using these two feature sets as input to categorize ECG signals. Predictions from these two models are fused to arrive at a final medical decision that improves the multi-label classification of the given ECG signals into twenty-six categories. Main results. We participated in the George B. Moody Physionet Challenge 2021 as team ’Medics’, and the proposed methodology was evaluated for all five lead combinations. The challenge scoring metrics obtained on the test data for twelve-, six-, four-, three-, and two-leads combinations are 0.360, 0.368, 0.376, 0.323, and 0.381, respectively. The proposed methodology was ranked 11th among all the follow-up entries of the Challenge. Significance. The obtained results of the proposed method justify the use of an ensemble classifier developed using the extracted feature sets for devising a diagnostic system for detecting and identifying common cardiac problems.

Publisher

IOP Publishing

Subject

Physiology (medical),Biomedical Engineering,Physiology,Biophysics

Reference39 articles.

1. Classification of 12-lead ECGs: the PhysioNet/Computing in Cardiology Challenge 2020;Alday;Physiol. Meas.,2021

2. Identification of the optimal electrocardiographic leads for detecting acute epicardial injury in acute myocardial infarction;Aldrich;The American Journal of Cardiology,1987

3. ECG-based subject identification using statistical features and random forest;Alotaiby;J. Sens.,2019

4. The use of shape factors for heart beats classification in holter recordings;Augustyniak;Computers in Medicine Conf,1997

5. Heart disease and stroke statistics2019 update: a report from the American Heart Association;Benjamin;Circulation,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3