Multi-modal fusion model for predicting adverse cardiovascular outcome post percutaneous coronary intervention

Author:

Bhattacharya Amartya,Sadasivuni SudarsanORCID,Chao Chieh-Ju,Agasthi Pradyumna,Ayoub Chadi,Holmes David R,Arsanjani Reza,Sanyal Arindam,Banerjee ImonORCID

Abstract

Abstract Background. Clinical medicine relies heavily on the synthesis of information and data from multiple sources. However, often simple feature concatenation is used as a strategy for developing a multimodal machine learning model in the cardiovascular domain, and thus the models are often limited by pre-selected features and moderate accuracy. Method. We proposed a two-branched joint fusion model for fusing the 12-lead electrocardiogram (ECG) signal data with clinical variables from the electronic medical record (EMR) in an end-to-end deep learning architecture. The model follows the joint fusion scheme and learns complementary information from ECG and EMR. Retrospective data from the Mayo Clinic Health Systems across four sites for patients that underwent percutaneous coronary intervention (PCI) were obtained. Model performance was assessed by area under the receiver-operating characteristics (AUROC) and Delong’s test. Results. The final cohort included 17,356 unique patients with a mean age of 67.2 ± 12.6 year (mean ± std) and 9,163 (52.7%) were male. The joint fusion model outperformed the ECG time-domain model with statistical margin. The model with clinical data obtained the highest AUROC for all-cause mortality (0.91 at 6 months) but the joint fusion model outperformed for cardiovascular outcomes - heart failure hospitalization and ischemic stroke with a significant margin (Delong’s p < 0.05). Conclusion. To the best of our knowledge, this is the first study that developed a deep learning model with joint fusion architecture for the prediction of post-PCI prognosis and outperformed machine learning models developed using traditional single-source features (clinical variables or ECG features). Adding ECG data with clinical variables did not improve prediction of all-cause mortality as may be expected, but the improved performance of related cardiac outcomes shows that the fusion of ECG generates additional value.

Publisher

IOP Publishing

Subject

Physiology (medical),Biomedical Engineering,Physiology,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3